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Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, 
including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydro-
dynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydro-
dynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with 
sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their 
corresponding critical sizes, which are determined by the physical properties and boundary temperatures. 
The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear 
heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the 
phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of 
violating the second law and multiplicity. Comparisons are also made between these non-Fourier models 
and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited 
behaviors.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

As a phenomenological model, Fourier’s law of heat conduc-
tion has been proved by numerous experiments and widely used in 
engineering. It describes a constitutive relation between the tem-
perature gradient and heat flux

q = −λ∇T , (1)

where q is the heat flux, λ is the thermal conductivity and T is the 
temperature. In statistical mechanics, Fourier’s law has been de-
rived approximately through several given theoretical assumptions, 
which also implies its possible restrictions, i.e., near-equilibrium 
region. Especially in nanoscale heat transport [1–6], the effects of 
far-from-equilibrium can play an important role because the char-
acteristic size can be comparable to the mean free path of heat 
carriers. The non-Fourier effects in nanoscale can be classified into 
three types [7]: relaxation, nonlocality and nonlinearity. Relaxation 
in heat conduction is first introduced by the Cattaneo–Vernotte 
(CV) model [8,9], whose hyperbolic governing equation predicts a 
finite wave velocity of heat propagation. It should be noted that in 
non-linear Fourier heat conduction [12,13], there also exist hyper-
bolic or wave-like characteristics. For instance, fast (superfast) dif-
fusion [14], where λ = λ(T ) ∝ T −α (0 < α < 2 is a constant), also 
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has the travelling wave solution T (x, t) = T1(x − Ut) + T2(x + Ut)
with a finite wave velocity U . Thus, hyperbolic or wave-like charac-
teristics are not enough to distinguish non-Fourier relaxation mod-
els and Fourier’s law. In the spirit of relaxation, the CV model has 
been generalized to different non-Fourier models, i.e., the Jeffrey 
model [10,11], a linear superposition of the CV and Fourier heat 
conductions. The constitutive relations of these relaxation models 
can usually be summarized as memory behaviors [10,11], where 
the heat flux is depended on the integrated history of the temper-
ature gradient. Different constitutive models can be given through 
different choices of the integral kernels. Most of the memory ker-
nels are exponential type or Dirac delta function (or their lin-
ear superposition) [10,11]. Power-law kernels can also be applied, 
which will lead to fractional differential operators [15,16]. The hy-
perbolic heat conduction models, i.e., the CV model, might predict 
non-positive values of the absolute temperature which seems un-
physical. Recently, hyperbolic heat conductions paired with this 
behavior have been further discussed by introducing a new class 
of stochastic processes [17,18], generalized Poisson–Kac processes. 
The nonlocal and nonlinear effects are mainly found in the models 
related to phonon hydrodynamics [19,20]. Most of these models 
are on the basis of phonon Boltzmann transport equation and re-
laxation approximations, while the thermon gas model [21–24]
takes a different method, which considers Einstein’s mass–energy 
relation in phonon hydrodynamics. The second spatial derivatives 
of the heat flux including ∇2q and ∇(∇ • q) [19,20] are the most 
common nonlocal terms. For steady-state cases, the relaxation 
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terms will disappear as ∂
∂t = 0 but nonlocality might still exist due 

to ∇2q �= 0, which means that the nonlocal models would not re-
duce to Fourier’s law.

In contrast with relaxation and nonlocality, nonlinearity, which 
might be unignorable in nanoscale heat transport, is not much 
studied [25–29]. The nonlinear effects predict significant and in-
teresting phenomenon, i.e., flux-limited behavior [29], where the 
heat flux tends to a finite upper bound with the temperature 
gradient increasing. The flux-limited behaviors in heat conduction 
caused by nonlinearity have been well discussed and reviewed by 
Guo et al. [25]. They have summarized the nonlinear models with 
flux-limited behaviors into three categories according to their the-
oretical foundations: phonon hydrodynamics, nonequilibrium ther-
modynamics, and phenomenological methods. These models ex-
pressed by the local temperature and heat flux distributions aim at 
providing constitutive relations for nanoscale heat transport. How-
ever, from the viewpoint of physics, it is obvious that they cannot 
be applied to the heat conduction problem with arbitrarily small 
size because the definitions of the local temperature and heat flux 
will be debatable or even undefinable for sufficiently small size. 
Therefore, besides the value of the heat flux varying along with 
the increasing temperature gradient, the applicable size of a heat 
conduction model should also be limited, which remains an open 
question.

In this work, it is found that this limitation of size can also be 
predicted by the nonlinear regime in the models with flux-limited 
behaviors, mainly including the phonon hydrodynamic [30,31] and 
Lagrange multiplier [32] models. For 1D steady-state heat conduc-
tion, where flux-limited behaviors are usually discussed, there will 
exist a critical size determined by the boundary temperatures, and 
the heat flux will exist only when the size is larger than the critical 
size. The critical sizes of these non-linear models can be regarded 
as the theoretical limits of their applicable ranges. The size and 
boundary effects for the existence of heat flux show different fea-
tures from Fourier heat conduction, which can always guarantee 
the existence of heat flux for arbitrary boundary temperatures and 
size. It means that even in the limit of small heat flux (or small 
temperature gradient), these non-Fourier models with flux-limited 
behaviors will not reduce to Fourier’s law and the nonlinear effects 
could not be negligible.

2. Critical size for heat flux in non-Fourier heat conduction

The flux-limited behaviors are mainly discussed for 1D steady-
state boundary value problems in [0, l] [25–29], where T |x=0 = T1
and T |x=l = T2 (without loss of generality, T1 < T2). In 1D steady-
state problems, the heat flux the heat flux reduces to a constant 
scalar q = −C and in consideration of T1 < T2, only positive C can 
satisfy the second law (the positive direction of the coordinate is 
from x = 0 to x = l).

2.1. Phonon hydrodynamic model

We start from the phonon hydrodynamic model [30,31], which 
is derived from Callaway’s relaxation approximation and maximum 
entropy principle

q + τR
∂q

∂t
+ λ∇T

= −τR∇ •
(

3v g〈qq〉
2v gcV T +

√
4v2

gc2
V T 2 − 3q2

)
, (2)

where 〈qq〉 is the deviatoric part of tensor qq, τR is the relax-
ation time of phonon resistive scattering, v g is the average phonon 
group speed and cV is the heat capacity per unit volume. In 
1D steady-state heat conduction, the governing equation of the 
phonon hydrodynamic model can be simplified to

C = λ

[
5 − 4√

1 − ( √
3C

2v g cV T

)2

]
dT

dx
. (3)

In 1D steady-state problems, Eq. (3) is derived from Eq. (2), which 
can be found in Ref. [25] (see Eqs. (9)–(11) of Ref. [25]). From 
Eq. (3), it is obvious that the upper bound of the heat flux should 
be limited |C | < 2v g cV T√

3
in mathematics. What’s more, the second 

law of thermodynamics requires a non-negative effective thermal 
conductivity λ[5 − 4√

1−( √
3C

2v g cV T

)2
] ≥ 0, which will give a smaller 

upper bound |C | ≤ 2
√

3
5 v gcV T . Similar upper bounds determined 

by v gcV T can also be found in other models. The correspond-
ing physical meaning is that the heat flux cannot be higher than 
the product of the energy density cV T and the maximum phonon 
speed sup(v g). The relation between the boundary temperatures 
and heat flux can be given by the integration of Eq. (3)

5(T2 − T1) − 4

[√
T 2

2 −
( √

3C

2v gcV

)2

−
√

T 2
1 −

( √
3C

2v gcV

)2]

= Cl

λ
. (4)

In the cases of C > 0, set 
√

3|C |
2v g cV

= u1 (0 ≤ u1 ≤ T1) and Eq. (4) is 
then rewritten as

5(T2 − T1) − 4
(√

T 2
2 − u2

1 −
√

T 2
1 − u2

1

)
= 2v gcV l√

3λ
u1. (5)

To determine the existence of u1 in [0, T1], an auxiliary function is 
introduced as follows

f1(u1) = 5(T2 − T1) − 4
(√

T 2
2 − u2

1 −
√

T 2
1 − u2

1

)
− 2v gcV l√

3λ
u1, (6)

whose first-order derivative is

df1(u1)

du1
= 4u1

(
1√

T 2
2 − u2

1

− 1√
T 2

1 − u2
1

)
− 2v gcV l√

3λ
. (7)

For T2 > T1, we have df1(u1)
du1

< 0 and hence, there is at most one 
solution. Due to f1(0) = (T2 − T1) > 0, the existence of u1 in 
[0, T1] needs

f1(T1) = 5(T2 − T1) − 4
√

T 2
2 − T 2

1 − 2v gcV l√
3λ

T1 ≤ 0, (8)

but inequality (8) is not necessarily satisfied, i.e., limT1→0 f1(T1) →
T2 > 0. In order to guarantee the existence of heat flux, the size 
should satisfy the following inequality

l ≥ lc1 =
√

3λ

2v gcV

[
5

(
T2

T1
− 1

)
− 4

√
T 2

2

T 2
1

− 1

]
. (9)

When 1 < T2
T1

≤ 41
9 , we find lc1 ≤ 0 and therefore, inequality (9) al-

ways holds, which means that the heat flux of this case must exist. 
For 41

9 <
T2
T1

, lc1 is positive and only when the size is larger than 
lc1, the heat flux will exist. Accordingly, a size effect about the ex-
istence of heat flux is found for 41

9 < T2
T1

. lc1, which is determined 
by the ratio of boundary temperatures, can be regarded as a critical 
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size for the existence of heat flux. This critical size gives a theo-
retical maximum applicable range for the phonon hydrodynamic 
model, which also shows the boundary effects on the existence of 
heat flux. If the ratio of the boundary temperatures is sufficiently 
small, the phonon hydrodynamic model could be applied to small 
(even arbitrarily small for T2

T1
≤ 41

9 ) scale heat conduction prob-
lems in theory. As the ratio increases, the critical size will increase 
and the theoretically applicable range of the phonon hydrodynamic 
model also becomes narrower. When the ratio tends to infinity, the 
critical size will also tend to infinity, which seems that this model 
is inappropriate to the case of T2

T1
� 1. On the other hand, for 1D 

heat conduction with a fixed size, the ratio of the boundary tem-
peratures will be limited by the size and in small scale problems, 
the ratio cannot be very large. It should be pointed that the above 
conclusions are based on constant physical properties. It requires 
that the physical properties display vanishingly small variations 
with the temperature. However, this requirement can only be sat-
isfied in narrow temperature ranges in many cases. Therefore, our 
conclusions might not be applicable for large T2

T1
in these cases. 

Non-positive length for 1 < T2
T1

≤ 41
9 is not physically meaningful, 

but the negative values of lc1 can show a mathematical possibil-
ity for C < 0. As we have mentioned, the positive direction of the 
coordinate is from x = 0 to x = l and then, the temperature dif-
ference is in the positive direction of the coordinate. According to 
the second law, the heat flux must be in the negative direction of 
the coordinate q = −C < 0 (C > 0). Therefore, C < 0 means that 
certain possible violation of the second law might be predicted. In 
this case, u1 satisfies the following equation

5(T2 − T1) − 4
(√

T 2
2 − u2

1 −
√

T 2
1 − u2

1

)
+ 2v gcV l√

3λ
u1 = 0, (10)

and its corresponding auxiliary function is rewritten as

f2(u1) = 5(T2 − T1) − 4
(√

T 2
2 − u2

1 −
√

T 2
1 − u2

1

)
+ 2v gcV l√

3λ
u1. (11)

It has been mentioned that lc1 is negative for 1 < T2
T1

< 41
9 , since 

it is possible that f2(T1) = 2v g cV T1√
3λ

(l + lc1) < 0 as long as l is suf-

ficiently small l < |lc1|. Due to f2(0) = (T2 − T1) > 0, there must 
exist at least one u1 satisfying Eq. (10). This means that neither 
existence nor uniqueness are guaranteed by the phonon hydrody-
namic model for the problem with sufficiently small scale, which 
could also cause the mathematical possibility of violating the sec-
ond law. If this mathematical possibility must be eliminated, we 
can let l > − min(lc1), which will give another critical size

l > l∗c1 = −min(lc1) =
√

3λ

6v gcV
. (12)

The mean free path of heat carriers could usually be estimated as 
L ∼= λ

3v g cV
, and we have l∗c1 = 0.866L. It seems that the phonon 

hydrodynamic model could be applicable to heat conduction pro-
cesses whose sizes are comparable to (or even slightly smaller 
than) the mean free path of heat carriers. If l � L, this model will 
predict several theoretical problems including multiplicity and vi-
olation of the second law. To sum up, the finally critical size of the 
phonon hydrodynamic model can be written as

lPH = max
(
l∗c1, lc1

) = max
(|lc1|

)
. (13)

As comparison, non-linear Fourier heat conduction with the ther-
mal conductivity expressed as λ = λ(T ) can always guarantee the 
existence, uniqueness and the second law for 1D steady-state prob-
lems with arbitrary boundary temperatures and sizes. These differ-
ences mean that the phonon hydrodynamic model cannot reduce 
to Fourier’s law even in the limit of small heat flux, which shows 
a different conclusion from Ref. [25].

2.2. Nonequilibrium thermodynamics models

Next, we focus on three nonequilibrium thermodynamic models 
which are obtained in the spirit of extended irreversible thermo-
dynamics (EIT) [6]. The first is the Lagrange multiplier model [32], 
which is on the basis of the Gibbs relation and information theory

q = −λ

2

[
1 − 3

2

(
q

v gcV T

)2

+
√

1 − 3

4

(
q

v gcV T

)2]
∇T . (14)

Similar to the above case, the size also needs to satisfy an inequal-
ity for the existence of heat flux

l ≥ lc2 =
√

3λ

4v gcV

[
T2

T1
+ 2T1

T2
− 3 +

√
T 2

2

T 2
1

− 1

− arccos

(
T1

T2

)]
. (15)

Let arccos
( T1

T2

) = θ (0 < θ < π
2 ) and we have

lc2(θ) =
√

3λ

4v gcV

(
2 cos θ + 1

cos θ
− 3 + tan θ − θ

)
, (16)

which is not necessarily positive. There exists a unique θc ∈ (0, π2 )

satisfying lc2(θc) = 0. For cos θc ≤ T1
T2

< 1, its corresponding heat 
flux will always exist, while for 0 < T1

T2
≤ cos θc , there is also a crit-

ical size lc2(θ) determined by the ratio of boundary temperatures. 
Then, we can conclude similar size and boundary effects on the 
existence of heat flux to the phonon hydrodynamic model. What’s 
more, the Lagrange multiplier model can predict the mathematical 
possibility for C < 0 either, and the critical size for avoiding this 
possibility can be given through the same method

l > l∗c2 = −min(lc2) =
√

3λ

4v gcV

(
3 + π

6
− 2

√
3

)
= 0.026L. (17)

Compared with the phonon hydrodynamic model, the Lagrange 
multiplier model predicts a much smaller critical size, which 
seems that this model has larger theoretically applicable range 
than the phonon hydrodynamic model. However, the phonon hy-
drodynamic model is selected as a credible physical standard in 
Ref. [18] for its more rigorous physical foundation and from this 
perspective, it should be more universal than the Lagrange mul-
tiplier model. Thus, the actual applicable range of the Lagrange 
multiplier model might be much narrower than its theoretically 
applicable range.

The second is the hierarchy moment model [33] which incor-
porates an infinite hierarchy of moments in the framework of EIT

q = − λ∇T

1
2 +

√
1
4 + L2

(∇T
T

)2
. (18)

In 1D steady-state problems, we can obtain

Cl

λ(T2 − T1)
+ C2L2

λ2T2T1
= 1, (19)

which is a monadic quadratic equation with a positive solution 
and a negative solution. In the cases of C < 0, we have dT

dx < 0
and T |x=0 < T |x=l , which is in contradiction with T1 < T2. Thus, C
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must be positive and hence the second law will always be satis-
fied. In summary, besides obeying the second law in physics, the 
hierarchy moment model also guarantees the uniqueness and exis-
tence independent of size in mathematics. The third model is the 
nonlinear phonon hydrodynamic model [26,27] which is obtained 
by introducing dynamical nonequilibrium temperature

q + τR
∂q

∂t
+ λ∇T = 2τR

T cV
q • ∇q + l2

[∇2q + 2∇(∇ • q)
]
. (20)

The nonlinear phonon hydrodynamic model will reduce to Fourier 
heat conduction in 1D steady-state problems [25], λ dT

dx = C , whose 
uniqueness and existence are independent of the size. Different 
from the phonon hydrodynamic and Lagrange multiplier models, 
the size and boundary effects on the existence of heat flux are not 
found in these two models.

2.3. Phenomenological models

Phenomenological method is another important type of non-
linear heat conduction with flux-limited behaviors. The tempered 
diffusion model [34] is a typical one

q = −λ

√
1 −

(
q

v gcV T

)2 dT

dx
, (21)

and the existence of heat flux in 1D steady-state problems needs

l ≥ lc3 = λ

v gcV

[√
T 2

2

T 2
1

− 1 − arccos

(
T1

T2

)]
. (22)

Unlike the cases of the phonon hydrodynamic and Lagrange multi-
plier models, lc3(θ) = λ

v g cV
(tan θ − θ) is always positive. Accord-

ingly, for any problem with fixed boundary temperatures, there 
always exists a critical size lc3 for the existence of heat flux. On 
the other hand, the positivity of lc3 guarantees the uniqueness and 
second law.

The second phenomenological model is the generalized non-
linear model [29] which is obtained by introducing dynamical 
nonequilibrium temperature

q + τR
∂q

∂t
+ λ

(
1 + βq2)∇T

= μq • ∇q + μ′∇q • q + L2[∇2q + 2∇(∇ • q)
]
, (23)

where β , μ and μ′ are the phenomenological coefficients. In 1D 
steady-state problems, this model also gives a monadic quadratic 
equation about C as follows [25]

1 + βC2 = Cl

λ(T2 − T1)
. (24)

When β < 0, Eq. (23) will always have a positive solution and a 
negative solution. It has been pointed that the case of β > 0 will 
lead to unphysical behaviors of heat flux [29]. From the viewpoint 
of existence, positive β makes l2

λ2(T2−T1)2 < 4β possible and there 
will be another critical size for existence

l ≥ lc4 = 2λ(T2 − T1)
√

β. (25)

For l > lc4, there are two possible solutions

C± = l

2λ(T2 − T1)β
±

√
l2

4λ2(T2 − T1)2β2
− 1

β
, (26)

which are both positive and then, the second law can be satisfied 
for each case. As the boundary temperature difference T2 − T1 in-
creases, C+ decreases while C− increases. When (T2 − T1) → 0+ , 
C+ even tends to infinity, which seems unphysical and therefore, 
it is better to select C− as the physically meaningful solution. 
The thermon gas model [21–24] is another widely discussed phe-
nomenological model derived from Einstein’s mass–energy relation 
and phonon hydrodynamics

q + τT
∂q

∂t
+ λ∇T = −τT ∇ •

(
qq

cV T

)
, (27)

where τT = ρτR v2
g

6γ cV T is the relaxation time of thermon gas, ρ is the 
mass density, and γ is the Grüneisen constant. It also predicts a 
monadic quadratic equation about C

C2
(

ρ

4γ c3
V T 2

1

− ρ

4γ c3
V T 2

2

)
+ (T1 − T2) = Cl

λ
, (28)

which will also have a positive solution and a negative solution. 
Eq. (28) is derived from the integral of the 1D constitutive rela-
tion, which can be found in Ref. [25] (see Eq. (16) of Ref. [25]). 
Compared with the tempered diffusion model, the last two phe-
nomenological models can also guarantee the existence indepen-
dent of size but they could predict the multiplicity and mathemat-
ical possibility of violating the second law.

3. Non-linear Fourier heat conduction with flux-limited 
behaviors

It should be noted that Fourier heat conduction with the ther-
mal conductivity λ = λ(T ) can also predict flux-limited behaviors. 
The fast diffusion [14], which is usually applied to complex phys-
ical systems, is a common type, where λ = λ0

T α (λ0 is a positive 
constant). In 1D steady-state problems, heat flux always exists for 
arbitrary boundary temperatures and size

C =
{

λ0
(1−α)l

(
T 1−α

2 − T 1−α
1

)
, α �= 1

λ0
l ln T2

T1
, α = 1.

(29)

Eq. (29) shows that predicting a limited flux as the temperature 
difference tends to infinity needs α > 1. The saturation heat flux of 
fast diffusion is λ0 T 1−α

1
(α−1)l , which will decrease with T1 increasing. In 

contrast, the saturation heat fluxes of the above non-Fourier mod-
els are increasing with T1 increasing (usually proportional to T ). 
In unsteady-state problems, this singular type of thermal conduc-
tivity λ = λ0

T α will reveal abundant original physicomathematical 
phenomenon, which is quite different from the cases of constant 
thermal conductivity. One remarkable behavior is superfast dif-
fusion, a special subclass paired with diffusion choking a finite 
time where a heat conduction process could terminate within a 
finite time. What’s more, the type of fast diffusion could pre-
dict travelling wave solutions in the forms of T1(x − Ut) and 
T2(x + Ut). The superposition of these travelling wave solutions 
T (x, t) = T1(x − Ut) + T2(x + Ut) will also satisfy the governing 
equation, which is exactly a well-known wave-like behavior pre-
dicted by the linear hyperbolic equation ∂2 T

∂t2 = U 2∇2T .
It seems that Fourier’s law is more robust than other models, 

and we will discuss why and how to achieve similar robustness. 
The effective thermal conductivities in this work can be summa-
rized as λeff = λeff (T , q). In 1D steady-state problems, we have 
C = λeff (T , −C) dT

dx , whose integral gives

Cl =
T2∫

T1

λeff (T ,−C)dT ⇔

l = 1

C

T2∫
λeff (T ,−C)dT = Ψ (T1, T2, C). (30)
T1
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The well-posedness for the heat flux needs a positive and unique 
C satisfying the above equation. For the uniqueness, Ψ (T1, T2, C)

must be monotonous for arbitrary boundary temperatures (T2 >

T1 > 0) and C > 0, ∂Ψ (T1,T2,C)
∂C �= 0. To guarantee the existence 

for arbitrary l ∈ (0, +∞), we need sup[Ψ (T1, T2, C)] = +∞ and 
inf[Ψ (T1, T2, C)] = 0. Generally speaking, λeff should be posi-
tive when C → 0 and hence we have limC→0 Ψ (T1, T2, C) =
limC→0

1
C

∫ T2
T1

λeff (T , 0)dT = +∞. Then, sup[Ψ (T1, T2, C)] = +∞
can be satisfied and because of the monotonicity, ∂Ψ (T1,T2,C)

∂C ≤ 0. 
According to ∂Ψ (T1,T2,C)

∂C ≤ 0 and inf[Ψ (T1, T2, C)] = 0, we can 
give limC→+∞ Ψ (T1, T2, C) = 0. In summary, a well-posed model 
need to satisfy ∂Ψ (T1,T2,C)

∂C ≤ 0 and limC→+∞ Ψ (T1, T2, C) = 0 for 
arbitrary T2 > T1 > 0. For Fourier’s law, the effective thermal 
conductivity is independent of the heat flux λeff = λeff (T ) and 
Ψ (T1, T2, C) = 1

C

∫ T2
T1

λeff (T )dT . It is not difficult to find that the 
above two conditions ∂Ψ (T1,T2,C)

∂C ≤ 0 and limC→+∞ Ψ (T1, T2, C) =
0 will be satisfied for arbitrary T2 > T1 > 0. That is why Fourier’s 
law is so robust in 1D steady-state problems. However, in multiple-
dimensional problems, Fourier’s law would not be well-posed ei-
ther. As we have mentioned, the type of fast diffusion λeff ∝ 1

T α

will results in no physically meaningful solutions for α > 1 [14], 
which is caused by the singularity limT →0+ λeff = +∞. Thus, 
the robustness requires at least three conditions (T2 > T1 > 0), 
limT →0+ λeff = +∞, ∂Ψ (T1,T2,C)

∂C ≤ 0 and limC→+∞ Ψ (T1, T2, C) =
0. Now we consider the strong nonlinear case of the generalized 
nonlinear model Eq. (23), where nonlinear term λβq2∇T plays 
a leading role. In this the strong nonlinear case, the linear term 
(λ∇T ), the nonlocal terms (μq •∇q, μ′∇q •q, L2∇2q, 2L2∇(∇ •q)) 
and the relaxation term τR

∂q
∂t are neglected, and then Eq. (23) will 

reduce to

q ∼= λβq2∇T . (31)

The strong nonlinearity will emerge when the physical properties 
satisfy βq2 � 1 and τR , μ′, μ, L → 0. In 1D problems, we can let 
u = q−1 and the governing equation is subsequently rewritten as

∂u

∂t
= 1

cV
∇

(
−λβ

u2
∇u

)
, (32)

which is also a fast diffusion type (β < 0). With other non-Fourier 
effects including nonlocality and relaxation neglected, non-Fourier 
characteristics caused by nonlinearity can be reflected. Eq. (32)
shows that the nonlinear non-Fourier effects would predict simi-
lar behaviors to fast diffusion.

4. Conclusions

Size and boundary effects on the existence of heat flux are 
found for several non-linear models with flux-limited behaviors 
including the phonon hydrodynamic, Lagrange multiplier and tem-
pered diffusion models. In 1D steady-state problems, the existence 
of heat flux needs the size larger than certain critical size, which is 
determined by the ratio of boundary temperatures. For the phonon 
hydrodynamic and Lagrange multiplier models, the critical sizes 
only exist for certain boundary temperatures while for the tem-
pered diffusion model, there always exists a critical size. These size 
and boundary effects provide theoretical rough estimations for the 
applicable ranges of the models. The second law will always be 
satisfied by the tempered diffusion model for its non-negative form 
of the effective thermal conductivity. In contrast, for the prob-
lems with sufficiently small size, the phonon hydrodynamic and 
Lagrange multiplier models could predict the mathematical possi-
bility of violating the second law, which could be avoided as long 
as the size is larger than the critical sizes.
From the physical point of view, for any non-zero tempera-
ture difference, there must exist a real value of the heat flux. 
However, it is found that several models could not predict real 
heat flux in some problems. To satisfy the constitutive relations 
of these models, the heat flux might need imaginary part in some 
cases, which seems unphysical. Therefore, the constitutive relations 
are not physically applicable in these cases, which are related to 
the scales. For given boundary conditions and physical properties, 
there will exist a critical length scale. As long as the scale of a heat 
conduction problem is smaller than this critical length scale, the 
heat flux predicted by the constitutive models will contain imagi-
nary part. It means that the heat conduction models are not phys-
ically applicable for the problem with “sufficiently small scale”. 
“Sufficiently small” means that the scale of this problem needs to 
be smaller than the critical length scale. The constitutive relations 
of these heat conduction models are expressed by the macroscopic 
temperature, heat flux and their derivatives. Strictly speaking, the 
definitions of these macroscopic quantities need local equilibrium, 
which would be debatable with the scale tending to zero. For in-
stance, when the scale is comparable to the molecular or atomic 
diameter, it is not appropriate to define a continuous tempera-
ture distribution or spatial differentials. As the definitions of the 
macroscopic quantities are not well-defined (or even undefinable), 
these heat conduction models will not be physically applicable ei-
ther. Thus, the physically applicable ranges of the models must be 
limited by the scale, which need sufficiently large scales to define 
the macroscopic quantities. On the other hand, the non-existence 
of the real heat flux also gives mathematically applicable ranges, 
which also need scales larger than the critical sizes. It is found 
that similar requirements for applicable ranges of the heat con-
duction models are established both on physics and mathematics. 
The critical size of a model is its mathematical maximum limit, 
and the corresponding physically applicable range should have 
stronger limit. The critical size could also help understand flux-
limited behaviors when the mean thermal conductivity λ satisfies 
liml→0 λ �= 0. In 1D heat conduction, we have |q| = λ

(T2−T1)
l and 

for a given temperature difference (T2 − T1), |q| will increases with 
decreasing l. If liml→0 λ �= 0, the heat flux |q| = λ

(T2−T1)
l will tend 

to infinity as l → 0. Therefore, if the heat flux has an upper bound 
sup(|q|) < +∞, l cannot be arbitrarily small l ≥ λ

(T2−T1)
sup(|q|) > 0. Then, 

the positive lower bound λ (T2−T1)
sup(|q|) could be understood as the crit-

ical size, which also shows why the critical size is effected by the 
boundary temperatures. It is found that the phonon hydrodynamic 
and Lagrange multiplier models could predict multiple solutions 
in a given 1D steady-state problem. Some of the solutions corre-
spond to the cases of C < 0. As the boundary conditions are taken 
as T1 = T |x=0 < T |x=l = T2, the temperature difference is in the 
positive direction of the coordinate. According to the second law, 
the heat flux must be in the negative direction of the coordinate 
q = −C < 0 ⇔ C > 0. Therefore, C < 0 means that heat could spon-
taneously flow from the cold boundary to the hot boundary, which 
seems to violate the second law. Note that the unphysical direction 
of heat transfer is found in steady-state problems. This violation of 
Clausius statement is not only in a local region or transient mo-
ment but also in global heat transfer. In summary, the phonon 
hydrodynamic and Lagrange multiplier models will predict multi-
ple solutions, and some of the solutions have unphysical direction 
of heat transfer, which violates the second law. One interesting 
conclusion is that similar to the non-existence of the heat flux, 
the multiplicity paired with the possible violation of the second 
law is also related to the scale. As shown in inequalities (12) and 
(17), the multiplicity paired with the possible violation of the sec-
ond law could be avoided when the two inequalities are satisfied. 
The supplementary critical sizes (l∗c1 and l∗c2) might give other ap-
plicable ranges for the heat conduction models.
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These size and boundary effects are not found in the nonlinear 
phonon hydrodynamic, thermon gas, hierarchy moment and gen-
eralized nonlinear (β < 0) models. The generalized nonlinear and 
thermon gas models will predict the possibility of multiplicity for 
any size while the hierarchy moment and nonlinear phonon hydro-
dynamic models are always well-posed for 1D steady-state heat 
conduction. However, the phonon hydrodynamic model, which is 
considered as a credible physical standard in Ref. [25] for its rig-
orous physical foundation, should be more universal than other 
models. It seems that size and boundary effects predicted by the 
phonon hydrodynamic model also exist for other models, and the 
applicable ranges must be limited for all the models. Besides these 
non-Fourier models, Fourier heat conduction in the type of fast 
diffusion could also predict flux-limited behaviors. Compared with 
the non-Fourier models, the type of fast diffusion has at least three 
different features: existence independent of size, decreasing satu-
ration heat flux with increasing temperature and dimensional de-
pendency. The flux-limited behaviors in heat conduction is usually 
discussed in 1D simplified problems, and l is the size in the heat 
transfer direction. Strictly speaking, it requires that there should 
exist a main heat transfer direction, and heat transfer in other di-
rections could be neglected. Therefore, l need to be selected on 
the basis of specific heat conduction problems. In nanoscale heat 
transport, where the models are used to describe the non-Fourier 
effects, l is usually the thickness of a nanoscale thin film or the 
length of a nanowire. For more universal cases, i.e., variable cross-
section, the generalization or selection of l needs further discus-
sion. If the heat conduction models predict obvious non-Fourier 
effects only at small scale, l can be selected as the minimum size 
of the region. However, it has been shown that the models can 
predict obvious non-Fourier effects at large scale. For instance, the 
non-Fourier effects of the phonon hydrodynamic model are also in-
fluenced by boundary temperatures, which will be obvious as long 
as T2 � T1. Accordingly, for these cases, the boundary conditions 
should also be considered in the selection of l, which is different 
from the selection of the “characteristic length scale” in Fourier 
heat conduction. Generally speaking, when the models reduce to 
Fourier’s law, l should also reduce to the “characteristic length 
scale” used in Fourier heat conduction. Our study on flux-limited 
behaviors is only for the 1D cases, while flux-limited behaviors 
also exist in multi-dimensional problems [35], which need further 
discussion.
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